Fecal Carriage of ESβL types TEM, SHV, CTX Producing Genera Proteus, Morganella, Providencia in Patients of Iran

Mohammad Taghi Akhi1, Pourya Gholizadeh1, Reza Ghotaslu1, Mohammad Asgharzadeh1, Mohammad Hossein Sourush1, Behrouz Naghili1, Peyman Gholmohammadi1, Abed zahedi Bialvaei1

1Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran.
1Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
1Tabriz University of Medical Sciences, Tabriz, IR Iran

Study Area: Tabriz, East Azarbaijan, Iran
Coordinates: 38°09'N 46°27'E

Key words: Healthy carriers, Cephalosporins resistance, Extended spectrum bete-lactamase

Abstract

Diseases like urinary tract infection, wound infections, bacteremia and other infections are mainly caused by the members of the genus Proteus, Morganella and Providencia which are mainly either found freely in the environment or in the gastrointestinal tract of humans. We studied Fecal carriage of ESβL producing species in carrier patients. Stool samples obtained from outpatients and inpatients not suffering from diarrhea and were cultured in CTX-MC-Conkey agar. Lactose negative and cefotaxime resistant bacteria were identified by biochemical tests and ESβL-producing isolates were detected using Combined Test. TEM, SHV and CTX genes were investigated by PCR. Total 15 (7.35%) isolates of 204 stool samples were identified as ESβL producing Proteus spp. (n=4, 1.96%), Morganella spp. (n=5, 2.45%) and Providencia spp. (n=6, 2.94%). Further, amongst or of the 15 ESβL producing strains, blaTEM was the commonest genotype (86.66%), followed by blaSHV (26.66%) and blaCTX-M (20%). All isolates were resistant to ampicillin, and cefotaxime whereas all Providencia and Morganella spp. were found to resist ceftazidime. Although the number of ESβL-producing and isolates from fecal carriers were low, but still, they can be considered as a reservoir of TEM, SHV and CTX genes and capable to transfer these resistant bacteria to hospitals.

Introduction:

Species of the Proteus, Morganella and Providencia genus are facultative anaerobic gram-negative bacilli that belong to the Enterobacteriaceae family and are found in the open environment, waste water and gastrointestinal tract of mammals, humans and animals (O’Hara et al., 2000). These organisms are one of the main causes of infections such as UTI (urinary tract infection), respiratory tract, wounds, bacteremia and other opportunistic infections and perhaps act as infection sources for extended-spectrum beta-lactamases (ESβLs) productions in both society and hospitals. Some studies have shown that the ESβL and AmpC producing isolates of P. mirabilis can be a cause of clonal spread in the hospital, regional and continent-wide outbreak (Nakano, et al., 2012). Providencia stuartii has been reported to contain ESBL enzymes such as TEM, SHV or CTX-M (Aubert et al., 2005; Franceschini et al., 1998). Based on Ambler classification, the class A includes three important genes of SHV, TEM, CTX-M; which are commonly found in the Enterobacteriaceae family (Lagacé-Wiens et al., 2007). The first plasmid beta-lactamase in Gram-negative bacteria was TEM-1 that identified in the early 1960s (Bradford, 2001). CTX-M and TEM are common ESβLs that are found in isolates of Proteus, Morganella and Providencia (Tumbarello et al., 2004) and in recent years, SHV has been reported in Iran (Malekjamshidi et al., 2010). All the three bacteria are normal flora of the gastrointestinal and transferred through endogenous or spreading from person to person, especially in hospitalized patients. The epidemiological analysis suggests that ESβL-producing Enterobacteriaceae species such as Proteus, Morganella and Providencia could be isolated in different environments of hospitals, human feces, infectious and healthy carriers, uncooked foods, and human sewage (Mesa et al., 2006). Fecal carriage of ESβL-
producing strains has not been studied enough in most of the Asian countries, including Iran. The aim of this study was to isolate and determine the types of ESBL (TEM, SHV, and CTX) produced by Proteus, Morganella, Providencia isolated from patients fecal carriers of teaching and treatment hospital of Tabriz.

Methods and Materials:

Bacterial isolates: In between November 2014 to February 2015, we collected 204 stool samples from non-hospitalized (n=100) and hospitalized patients (after 48 hours of admission; n=104). Patients suffering from gastrointestinal illness and diarrhea were excluded from the study. Stool samples obtained were cultured in MacConkey agar contain 2mg/L cefotaxime (CTX-Mac-Conkey) and were incubated at 37°C for 24 hours. Lactose-negative isolates were collected and were identified by routine biochemical tests such as motility, urea hydrolysis, citrate utilization, phenylalanine deaminase, arginine decarboxylase and other necessary tests. Identified isolates were stored at -20°C in trypticase soy broth containing 12% glycerol (Luvsansharav et al., 2012).

Antibiogram and detection of ESBL producing isolates: Disk diffusion tests on isolates were carried out using Mueller-Hinton agar plates and antibiotic discs including ampicillin (10 µg), cefotaxime (30 µg), ciprofloxacin (5 µg), gentamycin (10 µg), ceftazidime (30 µg), cefoxitin (30 µg) and cefepime (30 µg). All the plates were incubated at 37°C for 24 hours. Zones of inhibition around the disc were recorded using Clinical Laboratory Standards Institute instruction (CLSI, 2014). All isolates resistant to ampicillin, ceftazidime and cefotaxime were evaluated to confirm ESBL production by combined disc test (CDT). Ceftazidime (30 µg), ceftazidime+ clavulanic acid (30+10 µg), were placed on Muller medium and after 24 hours of incubation at 37°C, increasing more than 5mm inhibition zone around the disk containing clavulanic acid compared to without clavulanic acid confirmed as ESBL producing isolates (CLSI, 2014) (Figure 1).

Detection of TEM, SHV, CTX gene all bacterial isolates were grown for 24 hours at 37°C in Lauria-Bertani (LB) broth. DNA of isolates were extracted by sodium dodecyl sulphate-proteinase K modified with N, N, Ntrimethyl ammonium bromide (Ranjbar et al., 2007). The PCR reacted with specific primers for amplification of 569bp and 293bp and 403bp fragments (Bali et al., 2010):

- **blaCTX-M**: F: 5’-CGCTGTGTTAGGAAGTGTG-3’
 R: 5’-GGCGCGGGAAGTAACTAC-3’
- **blaSHV**: F: 5’-CGCCTGTGTATTATCTCCCT-3’
 R: 5’-CGAGTAGTCCAGACGCCT-3’
- **blaTEM**: F: 5’-TTCGTGTCGCTGGTCCTCC-3’
 R: 5’-ATCGTTGTCGACGTAAGTGG-3’

The amplification was done in a DNA thermal cycler (Eppendorf master cycler gradient, Germany), programmed for a primary denaturaton, (95°C, for 3 minutes), followed by 35 cycles of denaturation (94°C, 45s), 30 seconds for annealing (60°C for SHV and CTX-M, 55°C for TEM), elongation (72°C, one minute), and then extension (72°C, 10 minutes). A negative control without template was included in each PCR run. The amplified products were visualized by electrophoresis on 1.2% agarose gel in 1x TBE buffer (1 M Tris, 0.9 M boric acid, 0.01 M EDTA, pH = 8.4), at 80 V, for two hours. A 100-bp DNA ladder was used as a molecular mass marker. The gels were stained with ethidium bromide (0.5 µg mL-1) and photographed on a gel documentation system (UVP, USA) for the analysis of the bands (all the PCR materials including primers were provided by Cinnamon; Nedayeh Fan Co., Iran). The total volume of PCR mix was 25 µl, including sterile redistilled H2O 17.05µl, 10X PCR buffer 2.5µl, dNTP mix (10mM) 0.5µl, MgCl2 (50mM) 0.75µl, forward primer (25µM) 0.5µl and reverse primer (25µM) 0.5µl for each gene, Taq DNA polymerase (5U/µl) 0.2µl, template DNA 3µl. Negative controls contained all components except template DNA. Primers and other reagents were prepared according to the manufacturer’s recommendation (Akhi et al., 2015; Sharma et al., 2013). (Figure 2).

Figure 1: Phenotypic detection of ESBL-producing isolates; increasing more than 5mm inhibition zone around the disc containing cefotaxime + clavulanic acid (CEC, 30/10µg) compared to cefotaxime (CTX, 30µg) are confirmed as ESBL producing isolates.

Figure 2: Genotypic detection of ESBL producing isolates. Ladder, positive control for three genes, representative of SHV (383 bp), TEM (495 bp), CTX (560 bp) positive bacteria, negative control 1, negative control 2 and ladder left to right are shown respectively.
Statistical analysis: The study data was analyzed by using descriptive statistics (frequency - percent) and using the software spss-17. Chi-square test was applied to evaluated the incidence of genes with antibiotic susceptibility, to observe the correlation between the prevalence of ESβL genes and antibiotic susceptibility. Significance of results were calculated at 95% confidence level (p≤0.05).

Results:
Total 15 (7.35%) isolates from 204 stool samples were identified as Proteus (n=4, 1.96%), Morganella (n=5, 2.45%) and Providencia (n=6, 2.94%). Ratio between women and men were 39.1% and 60.9% respectively. The age ranges of the patients were 15-83 year; distribution of age according to Kolmogorov - Smirnov test was normal (p≥0.05).

Antibiogram and detection of ESβL producing isolates: all strains of Proteus, Morganella and Providencia were found to be resistant to ampicillin. Proteus spp. showed resistance to cefotaxime, cefoxitin and susceptible to other antibiotic. Morganella spp. showed resistance to amoxicillin + clavulanic acid, cefotaxime and ceftazidime while Providencia spp. was resistance to cefotaxime and ceftazidime. Antibiogram result of each genus has been shown in the table-1 separately.

<table>
<thead>
<tr>
<th>Spp.</th>
<th>Amp</th>
<th>Amc</th>
<th>Cec</th>
<th>Ctx</th>
<th>Cip</th>
<th>Gen</th>
<th>Caz</th>
<th>Cpm</th>
<th>A/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>100</td>
<td>25</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>2.</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>16.7</td>
<td>100</td>
<td>16.7</td>
<td>100</td>
<td>16.7</td>
</tr>
</tbody>
</table>

Amp (Ampicillin, 10 µg), Amc (Amoxicillin + clavulanic acid, 30 µg), Cec (cefotaxime + clavulanic acid, 40 µg), Ctx (ceftaxime, 30 µg), Cip (ciprofloxacin, 5 µg), Cac (ceftazidime + clavulanic acid, 40 µg), Gen (gentamycin, 10 µg), Caz (ceftazidime, 30 µg), Cx (cefotaxime, 30 µg), Cpm (cefepime, 30 µg), A/S (ampicillin + sulbactam, 20 µg)

Detection of TEM, SHV, CTX gene: of the 15 (7.35%) ESBL producing strains, blaTEM was the most common genotype (86.66%), followed byblaSHV (26.66%) and blCTX-M (20%). Most of the Proteus spp. wereTEM and SHV genes positive whereas all of the Morganella spp were TEM gene positive and SHV gene negative and most of the Providencia spp. was TEM gene positive. The results of genes detection in each genus has been shown in the table 2 separately.

<table>
<thead>
<tr>
<th>Spp.</th>
<th>TEM</th>
<th>SHV</th>
<th>CTX</th>
<th>TEM+SHV</th>
<th>TEM+CTX</th>
<th>SHV+CTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>% 75(3)</td>
<td>% 75(3)</td>
<td>0</td>
<td>% 50(2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>% 100(5)</td>
<td>0</td>
<td>% 40(2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>% 83(3)</td>
<td>% 16.7(1)</td>
<td>% 16.7(1)</td>
<td>0</td>
<td>% 16.7(1)</td>
<td>0</td>
</tr>
</tbody>
</table>

Discussion:
ESβL production by nosocomial pathogens is a major challenge for infection control committees in hospitals all over the world. ESβL-producing strains and their encoding genes can stay permanently in hospitals, causing colonization and outbreaks. In recent years, antibiotic-resistant ESβL-producing bacteria in hospitalized patients has increased all over the world (Bradford, 2001; Denton, 2006; Gupta et al., 2003).

Till date not sufficient reports available about the distribution and source of infectious of these bacteria. In addition, how many healthy people are carrying ESβL-producing bacteria or are transmitted by inpatient or outpatient to the hospital are not known. Asymptomatic colonization of the intestinal compartment with ESβL-producing Enterobacteriaceae isolates has already been reported (Miró et al., 2005; Valverde et al., 2004). Higher prevalence of ESβL-producing E. coli, klebsiella and other Entero-bacteriaceae of fecal carriage has been reported in the nosocomial setting than in any community (Chong et al., 2013). Nevertheless, little information is available about healthy carrier of Proteus, Morganella and Providencia.

ESβL producing Proteus, Morganella and Providence causes clinically significant hospital associated infections and are also known to cause community-acquired infections due to selective pressure owing to widespread use of third generation cephalosporin (Chong et al., 2013; Mahmoudi et al., 2014; Poirel et al., 1999).

Therefore, in this study, we have cultured hospitalized and non-hospitalized normal gastrointestinal patient’s stool samples that attended to the hospital and examined ESβL producing, antibiotic susceptibility pattern and the presence of TEM, SHV and CTX genes in Proteus, Morganella and Providencia isolates. The rate of ESβL producing isolates in our study was 7.35%, including Proteus (n=4, 1.96%), Morganella (n=5, 2.45%) and Providencia (n=6, 2.94%) which are higher than studies carried on Enterobacteriaceae in different parts of the world such as Switzerland (5.8%), Sweden (3%), Spain (5.5%), India (10%) and Saudi Arabia (13.2%) (Geser et al., 2011; Tängdén et al., 2010) fortunately no report available on ESβL producing Proteus, Morganella and Providencia. Albeit all of these studies were of different genus and species of Enterobacteriaceae but most of them isolated only ESβL producing E.coli and Klebsiella spp. Our research was the first report about healthy ESβL carrier of Proteus, Morganella and Providencia in Tabriz. The main reason for a high prevalence rate of ESβL producers in our city could be the lack of strict policy for an antibiotic prescription and also the excessive use of these antibiotics could explain the higher prevalence of fecal carriage of ESβL-producing
organisms in the hospital, compared with the rate in the community.

In contrast to our results Kader et al. (2007) reported that the rate of fecal carriage of ESβL-producing organisms among inpatients (26.1%) was higher than that among outpatients (15.4%).

Saharman & Lestari (2013) reported 8.04% of ESβL producing Proteus mirabilis isolated from ICU patients which is much higher than our results (1.96%) indicating that there is much difference between isolates of healthy carriers and those isolated from patients.

Our results showed that blaTEM was the commonest genotype (86.6%), followed by blaSHV (26.6%) and blaCTX-M (20%), which corresponds to the results obtained by Bali et al. (2010) in turkey for E. coli and Klebsiella indicating that Proteus, Morganella and Providencia similar to other members of family Enterobacteriaceae can be one of the major sources for this medically important genes and they can pass the gene to other clinical strains.

In our study, the cefotaxime, ampicillin and cefoxitin resistance rate were high for Proteus spp. while Morganella spp. showed high resistance to ampicillin, amoxicillin+ clavulanate, cefotaxime and ceftazidime. Providencia spp. was 100% resistant to cefotaxime, ampicillin and ceftazidime and moderately to other tested antibiotics. These results are nearly similar to the susceptibility findings for clinical isolates (Dropa et al., 2009, indicating that healthy carrier isolates are potentially able to produce serious infections. Although documentation confirming recent exposure to antibiotics along both outpatients and hospitalized patients was not available for us but the unrestricted sale of antibiotics in developing countries is likely to create a general pool of resistant organisms in the population. Oral consuming of amoxicillin-clavulanate and fluoroquinolone (eg, ciprofloxacin) are some of the antibiotics that are frequently obtained and used without prescriptions and also are used for prophylactic purposes in surgery operations.

The existence of ESβL-producing organisms in the gut of outpatients and hospitalized patients could make some clinical problems, as intestinal tract colonization is a necessary precondition for induction of infection by ESβL-producing organisms (Lucet et al., 1996). Hence, infectious diseases physicians and clinical microbiologists should be precisely informed about ESβL-producing organisms that they are not only circulating in hospital environments but in the community as well by the healthy carrier and they have to be under consideration. To control or reduce the high rate of carriage for these organisms, efficient action should be considered to prevent the availability of antibiotics without a prescription and to increase knowledge among the people of the hazards of taking antibiotics without medical consultation.

Although the number of ESβL-producing Proteus, Morganella and Providencia isolates from fecal carriers are low, but still, they can be considered as a reservoir of TEM, SHV and CTX genes; thus carrier are also able to transfer these resistant bacteria to hospitals.

Acknowledgements:
This study was financially supported by the Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran and the manuscript was written based on a dataset of MSc thesis of Pourya Gholizadeh registered at Tabriz University of Medical Sciences. The authors would like to thank all Microbiology lab staff of ghazitabatabaei and Imam Reza teaching and treatment center of Tabriz for their collaborations and helps. This study was approved by the ethical committee of regional Medical Research of Tabriz University of Medical Science and all patients provided written informed consent for this research (TBZMED. REC. 1394.352).

References:

