Ambient Science: Click the Volume and issue number for Complete Article

Location where to get the Complete Article --> Ambient Science: Vol 3, No 2 (2016): 01-03

ISSN- 2348-5191 (Print version); 2348-8980 (Online)

Systematic Numbers for Monte Carlo Integration



Mojtaba Moradi

Abstract

The generation of quasi-random numbers is one of the most important problems in the Monte Carlo method. In this paper, the author introduces a simple and fast algorithm to generate a new class of systematic numbers. An ideal case in which one can apply these numbers is the Monte Carlo integration.


References

  • Faure, H., & Lemieux, C. (2009): Generalized Halton sequences in 2008: A comparative study. ACM Transactions on Modeling and Computer Simulation (TOMACS), 19(4): #15.
  • Hellekalek, P. (1998): Good random number generators are (not so) easy to find. Mathem. Comp. Simul., 46(5-6):485-505.
  • Kocis, L. & Whiten, W.J. (1997): Computational Investigations of Low-discrepancy Sequences. ACM Trans. Math. Softw.,23(2): 266-294.
  • Lemieux, C. (2009): Monte carlo and quasi-monte carlo sampling. Springer Science & Business Media.
  • Morokoff, W. & Caflisch, R. (1994): Quasi-Random Sequences and Their Discrepancies. SIAM J. Sci. Comp., 15(6):1251-1279.
  • Niederreiter, H. (2010): Quasi-Monte Carlo Methods. John Wiley & Sons, Ltd.
  • Owen, A.B. (2003): The dimension distribution and quadrature test functions. Stat. Sinica, 13(1), 118.
  • Sobol', I.M. & Asotsky, D.I. (2003): One more experiment on estimating high-dimensional integrals by quasi-Monte Carlo methods. Math. Comput. Simul., 62(36):255-263.

  • DOI:10.21276/ambi.2016.03.2.ga01


    Creative Commons License


    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
    Published by: National Cave Research and Protection Organization, India

    <Environmental Science+Zoology+Geology+Cave Science>AMBIENT SCIENCE